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Abstract
A neutral particle with general spin and magnetic moment moving in an
arbitrarily varying magnetic field is studied. The time evolution operator
for the Schrödinger equation can be obtained if one can find a unit vector that
satisfies the equation obeyed by the mean of the spin operator. There exist at
least 2s + 1 cyclic solutions in any time interval. Some particular time interval
may exist in which all solutions are cyclic. The nonadiabatic geometric phase
for cyclic solutions generally contains extra terms in addition to the familiar
one that is proportional to the solid angle subtended by the closed trace of the
spin vector.

PACS numbers: 03.65.Vf, 03.65.Ta

Since the discovery of the geometric phase [1–9], particles with spin and magnetic moment
moving in time-dependent magnetic fields have received much attention [10–23], though the
subject is rather old and some discussions can be found in the textbook [24]. Neutral particles
are of special interest since the problem is easier and the Schrödinger equation can be solved
analytically in some special cases, say, uniform magnetic fields with a fixed direction or
rotating ones. Thus the model is very suitable for the study of time evolution, cyclic solutions
and geometric phases etc. However, some problems in this model are still not clear. First,
the Schrödinger equation for general spin, or even for spin 1/2, in an arbitrarily varying
magnetic field seems impossible to solve analytically. Second, though the existence of cyclic
solutions in a given time interval may be ensured by the existence of eigenvectors for the
unitary time evolution operator, it does not seem clear how many there are in the general case.
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Third, for spin 1/2 it is well known that any cyclic solution in an arbitrary magnetic field
has a nonadiabatic geometric phase proportional to the solid angle subtended by the closed
trace of the spin vector. For higher spin, however, this is true only for cyclic solutions with
special initial conditions [15, 16, 22]. For more general cyclic solutions in a rotating magnetic
field, we have shown that the nonadiabatic geometric phase contains an extra term in addition
to the one proportional to the solid angle. The extra term vanishes automatically for spin
1/2. For higher spin, however, it depends on the initial condition [22]. It is still not clear
what is the relation between the nonadiabatic geometric phase and the solid angle for general
cyclic solutions in an arbitrary magnetic field. In this paper, we are going to deal with these
problems, and try to solve them to some extent. Besides the theoretical interest in itself and
other applications [9, 19], this subject has been recently recognized to be of great interest in
the physics of quantum computation [25, 26].

Consider a neutral particle with spin s (s = 1/2, 1, 3/2, . . .) and magnetic moment
µ = µs/s, where s is the spin operator in units of h̄, satisfying [si , sj ] = iεijksk (for spin
1/2, s = σ/2 and µ = µσ). In a uniform but time-dependent magnetic field B(t) = B(t)n(t)

where n(t) is a unit vector, it has the Hamiltonian H(t) = −µ ·B(t) = −h̄ωB(t)s ·n(t), where
ωB(t) = µB(t)/sh̄, and the Schrödinger equation ih̄∂tψ(t) = H(t)ψ(t) takes the form

∂tψ(t) = iωB(t)s · n(t)ψ(t). (1)

Define the spin vector as

v(t) = (ψ(t), sψ(t)). (2)

Using equation (1) it is easy to show that it obeys the equation

v̇(t) = −ωB(t)n(t) × v(t). (3)

We are not going to solve equation (1) in the general case since this seems impossible.
However, we will show that the time evolution operator for equation (1) can be obtained
without any chronological product if one can find one nontrivial (nonzero) solution, say, a
unit vector e(t), to equation (3). This is of interest since the latter is easier and more cases
can be solved [14]. Actually, equation (1) involves operators while equation (3) involves only
c-numbers. On the other hand, if transformed to a matrix equation, equation (1) involves 2s +1
complex variables, while equation (3) involves only three real ones (actually two since it is
easy to see that v2(t) = v2(0)). Using the time evolution operator and equation (3), one can
discuss cyclic solutions and geometric phases in a most general way. In particular, we will
show that there exist at least 2s + 1 cyclic solutions in any time interval. A general relation
between the nonadiabatic geometric phase and the solid angle subtended by the closed trace
of the spin vector will be established.

To begin, we take an arbitrary unit vector e0, and the eigenstate of s · e0 with eigenvalue
m will be denoted by χm. We take the initial state of the system to be ψ(0) = χm, that is

s · e0ψ(0) = mψ(0) m = s, s − 1, . . . ,−s. (4)

Obviously v(0) = me0 in this initial state. Now we define a vector e(t) by equation (3) with
the initial condition e0, that is

ė(t) = −ωB(t)n(t) × e(t) (5)

with e(0) = e0. We would assume that B(t) varies continuously, so that any solution e(t) is
well behaved. As pointed out above, e2(t) = e2

0, so e(t) is a unit vector at any time. We have
proved in [22] that

s · e(t)ψ(t) = mψ(t) (6)
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holds at all later times. To be self-contained, we repeat here the proof by induction.
By definition, equation (6) is valid at t = 0. We assume that it is valid at time t, what we

need to do is to show that it is also true at time t + �t where �t is an infinitesimal increment
of time. In fact, using equations (1) and (5) we have

ψ(t + �t) = ψ(t) + iωB(t)s · n(t)ψ(t)�t (7a)
e(t + �t) = e(t) − ωB(t)n(t) × e(t)�t. (7b)

After some simple algebra, the conclusion is achieved.
Because e(t) is a unit vector, we can write in some rectangular coordinates

e(t) = (sin θ(t) cos φ(t), sin θ(t) sin φ(t), cos θ(t)). (8)

Using the formula [22, 27]

eiξs·bs e−iξs·b = [s − (s · b)b] cos ξ + (b × s) sin ξ + (s · b)b (9)

where b is any unit vector, it is not difficult to show that

s · e(t) = e−iθ(t)s·d(t)sz eiθ(t)s·d(t) (10)

where

d(t) = (−sin φ(t), cos φ(t), 0). (11)

Therefore, the eigenstate of s · e(t) with eigenvalue m is

ψ(t) = eiαm(t) e−iθ(t)s·d(t)χ0
m (12)

where χ0
m is the eigenstate of sz with eigenvalue m, and αm(t) is a phase that cannot be

determined by the eigenvalue equation. However, αm(t) is not arbitrary. To satisfy the
Schrödinger equation, it should be determined by the other variables θ(t) and φ(t). In fact,
the above equation yields

(ψ(t), ψ(t + �t)) = 1 + iα̇m(t)�t +
(
χ0

m, eiθ(t)s·d(t)∂t e−iθ(t)s·d(t)χ0
m

)
�t. (13)

Using the formula [27]

e−F(t)∂t eF(t) =
∫ 1

0
e−λF(t)Ḟ (t) eλF(t) dλ (14)

where F(t) is any operator depending on t, and then using equation (9), we obtain

(ψ(t), ψ(t + �t)) = 1 + iα̇m(t)�t + im[1 − cos θ(t)]φ̇(t)�t. (15)

On the other hand, from equation (1) we have

(ψ(t), ψ(t + �t)) = 1 + iωB(t)v(t) · n(t)�t. (16)

Note that v(t) and e(t) satisfy the same equation, and v(0) = me0, we have v(t) = me(t).
Comparing the two results above and taking this relation into account, we obtain

α̇m(t) = −m[1 − cos θ(t)]φ̇(t) + mωB(t)e(t) · n(t). (17)

Therefore

αm(t) − αm(0) = mα(t) (18)

where

α(t) = −
∫ t

0
[1 − cos θ(t ′)]φ̇(t ′) dt ′ +

∫ t

0
ωB(t ′) e(t ′) · n(t ′) dt ′. (19)

Substituting into equation (12) we obtain

ψ(t) = e−iθ(t)s·d(t) eiα(t)sz eiθ(0)s·d(0)ψ(0). (20)
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We denote the time evolution operator as U(t), defined by the equation ψ(t) = U(t)ψ(0)

with an arbitrary ψ(0), then the above equation is equivalent to

U(t)χm = e−iθ(t)s·d(t) eiα(t)sz eiθ(0)s·d(0)χm. (21)

Now an arbitrary initial state ψ(0) can always be expanded as

ψ(0) =
∑
m

cmχm. (22)

Applying U(t) to both sides of this equation, using equation (21), and noting that the operators
on the right-hand side of that equation are independent of m, we immediately realize that
equation (20) is in fact valid for an arbitrary initial state. Thus we arrive at the result

U(t) = e−iθ(t)s·d(t) eiα(t)sz eiθ(0)s·d(0). (23a)

Using equation (9), it can be recast in the form

U(t) = e−iθ(t)s·d(t) eiθ(0)s·d(0) eiα(t)s·e0 . (23b)

Equation (23b) is suitable for the general discussions below while equation (23a) may be more
convenient for practical calculations.

Let us make some remarks on the result. First, we see that once a solution of equation (5) is
found, the time evolution operator for equation (1) is available and it involves no chronological
product. The result depends formally on e0, but e0 is merely an auxiliary object, hence the
result must be essentially independent of it, though it might be difficult to prove this explicitly.
In practical calculations, one should choose a solution e(t) that is as simple as possible such
that U(t) can be easily reduced to the simplest form. When this approach is used for the
simple cases such as rotating magnetic fields or ones with a fixed direction, it indeed leads to
the same results as those obtained previously. Second, the operator U(t) depends not only on
e(t), but also on the history of it. This is obvious from equation (19). Third, though φ(t) is
indefinite when θ(t) = 0 or π , the above result U(t) is in fact well behaved everywhere. That
it is well defined at θ(t) = 0 is obvious. If θ(0) = 0, there is no problem either. The case with
θ(0) = π can be avoided since one can always choose a coordinate system such that θ(0) �= π .
However, for a general evolution, the case with θ(t) = π at some instant cannot be avoided.
Thus we must show that U(t) is well behaved at θ(t) = π . Suppose that θ(t0) = π , then we
have φ

(
t+
0

) − φ
(
t−0

) = ±π, d
(
t+
0

) = −d
(
t−0

)
and α

(
t+
0

) − α
(
t−0

) = ∓2π . With these relations
it is not difficult to show that U

(
t+
0

) = U
(
t−0

)
. Since both U

(
t+
0

)
and U

(
t−0

)
are well defined,

we may define U(t0) = limt→t0 U(t). This makes U(t) well defined and continuous at t = t0.
Fourth, by straightforward calculations it can be shown that ∂tU(t) = iωB(t)s · n(t)U(t) and
U(0) = 1, as expected.

Now we can go further to discuss cyclic solutions in any time interval [0, τ ] where τ is
an arbitrarily given time. These cyclic solutions are not necessarily cyclic in subsequent time
intervals with the same length, say, [τ, 2τ ].

Since equation (5) is a linear differential equation, the general solution e(t) must depend
on the initial vector e0 linearly. Thus it can be written in a matrix form

ei(t) = Eij (t)e0j (24)

where the matrix E(t) is obviously real. If both e1(t) and e2(t) are solutions to equation (5),
it is easy to show that e1(t) · e2(t) = e1(0) · e2(0). Therefore, the matrix E(t) is an orthogonal
one, and its eigenvalues at any time t have the form {1, σ (t), σ ∗(t)}, where σ(t) is a complex
number with |σ(t)| = 1, and σ ∗(t) its complex conjugate.
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If σ(τ) �= 1, one eigenvector η(τ ) of the matrix E(τ) with eigenvalue 1 can be found,
which satisfies Eij (τ )ηj (τ ) = ηi(τ ). It can be taken as real and normalized. Now if we
choose

e0 = η(τ ) (25)

we have ei(τ ) = Eij (τ )e0j = Eij (τ )ηj (τ ) = ηi(τ ) = ei(0), that is

e(τ ) = e0. (26)

This means that θ(τ ) = θ(0) and d(τ ) = d(0), and leads to

U(τ) = eiα(τ)s·e0 . (27)

Now it is clear that with the initial condition ψ(0) = χm (m = s, s − 1, . . . ,−s), we have a
cyclic solution in the time interval [0, τ ]. More specifically, ψ(τ) = eiδψ(0), where the total
phase change is δ = mα(τ), mod2π , with α(τ) given by

α(τ) = −�e +
∫ τ

0
ωB(t) e(t) · n(t) dt (28)

where

�e =
∫ τ

0
[1 − cos θ(t)]φ̇(t) dt

is the solid angle subtended by the closed trace of e(t). Note that v(t) = me(t), the dynamic
phase β = −h̄−1

∫ τ

0 〈H(t)〉 dt turns out to be

β = m

∫ τ

0
ωB(t) e(t) · n(t) dt . (29)

Therefore, the nonadiabatic geometric phase is

γ = δ − β = −m�e mod 2π. (30)

Since �e = ε(m)�v, mod 4π , where �v is the solid angle subtended by the closed trace of
the spin vector, we have finally

γ = −|m|�v mod 2π (31)

in accord with the results previously obtained [15, 16, 22]. Thus we see that 2s + 1 cyclic
solutions are available in any time interval [0, τ ], and all phases can be expressed in terms of
the unit vector e(t).

States with initial condition other than the above ones are, in general, not cyclic ones,
even those in which v(0) points in the direction of e0 such that v(τ ) = v(0). However, if
α(τ)/π happens to be a rational number other than an even integer (the case with α(τ)/π an
even integer will be discussed below), some other cyclic solutions may be available. To be
more specific, let α(τ) = pπ/n, where n is a natural number and p an integer. When n = 1, p

is an odd number, and when n > 1 it is prime with p. If s � n, we have cyclic solutions with
initial condition, say (no such solution exists for s = 1/2),

ψ(0) =
N2∑

j=−N1

cjχm+2nj (32)

where N1 and N2 are nonnegative integers, and

m − 2nN1 � −s m + 2nN2 � s

N2∑
j=−N1

|cj |2 = 1.
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In this initial state

v(0) = v0e0 (33)

where v0 = ∑N2
j=−N1

(m + 2nj)|cj |2 may be either positive or negative. It is easy to show
that ψ(τ) = eiδψ(0), where δ = mα(τ), mod 2π . Because of equation (33), we have
v(t) = v0e(t), and the dynamic phase is

β = −h̄−1
∫ τ

0
〈H(t)〉 dt =

∫ τ

0
ωB(t)v(t) · n(t) dt = v0

∫ τ

0
ωB(t) e(t) · n(t) dt .

Using equation (28), we have

β = v0[α(τ) + �e]. (34)

This holds regardless of the values of v0 and α(τ), as long as equation (33) is valid. Suppose
that in the process from t = 0 to t = τ, e(t) encircles the polar axis K times (K > 0 for
anticlockwise traces and K < 0 for clockwise ones), then we have

�e + �−e = 4πK. (35)

This leads to v0�e = |v0|�v + 2πK(v0 − |v0|). The geometric phase turns out to be

γ = −|v0|�v + 2πK(|v0| − v0) + (m − v0)pπ/n mod 2π. (36)

In this case we see that the geometric phase contains extra terms in addition to the one
proportional to �v , unless the sum of these extra terms happens to be an integral multiple of
2π . Note that the above relation holds for the case v0 = 0 as well, though �v is not well
defined in this case.

If it happens that α(τ) = 2kπ , then U(τ) = ei2πks becomes a c-number and all solutions
are cyclic in the time interval [0, τ ]. However, this is true only on the premise of (26). Thus
α(τ) = 2kπ alone is not a sufficient condition for all solutions to be cyclic, but it is easy to
show that it is a necessary one. A sufficient condition is σ(τ) = 1.

Now if σ(τ) = 1, E(τ) becomes a unit matrix. In this case any vector is its eigenvector
with eigenvalue 1. Therefore equations (26) and (27) hold for any unit vector e0. In particular,
we have

U(τ) = eiα1(τ )sx = eiα2(τ )sy = eiα3(τ )sz (37)

where α1(τ ) is given by equation (28) with e0 = ex and similarly for α2(τ ) and α3(τ ). Since
sx, sy and sz are independent operators, the above equation cannot hold unless αi(τ ) = 2πki

where ki are integers such that U(τ) becomes a c-number. In general, with an initial unit
vector e0, we have

α(τ) = 2πk (38)

and

U(τ) = eiα(τ)s·e0 = ei2πks. (39)

Let us see what is the dependence of α(τ) or k on the direction of e0. Consider two initial
unit vectors e0 and e′

0, whose difference δe0 = e′
0 − e0 is infinitesimal (then δe0 · e0 = 0). The

difference in α(τ) is, according to equation (28),

δα(τ) = α′(τ ) − α(τ) = −δ�e +
∫ τ

0
ωB(t)δ e(t) · n(t) dt . (40)

Since ei(t) = Eij (t)e0j , we have δei(t) = Eij (t)δe0j , and the second term in the above
equation is consequently infinitesimal. Moreover, the trace of e′(t) is very close to that of
e(t), thus the difference in the solid angles subtended by them is infinitesimal. Therefore, both
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δα(τ) and δk = δα(τ)/2π are infinitesimal as well. Now that k can take only integer values,
an obvious consequence is that δα(τ) = 0 and k′ = k.

A subtle case has been overlooked in the above discussions, however. This happens when
e(t) goes by the south pole (θ = π) on one side and e′(t) goes by it on the other. In other
words, the closed trace of e(t) as a whole goes across the south pole when e0 varies to e′

0. In
this case α(τ) will be changed by an integral multiple of 4π and k by an even integer. One
can of course remove this change by rotating the coordinate system such that the trace of e(t)
does not go across the south pole. However, this can only be done locally, and globally it is
impossible in general. In other words, one cannot choose a coordinate system such that k is
the same for all e0, except for some simple cases, say, magnetic fields with a fixed direction.
The above dependence of α(τ) on e0 has no consequence on the time evolution operator as
expected. This is easily seen from equation (39): when k changes by an even integer, U(τ)

remains the same.
In the special case where k is the same for all e0, a geometric explanation of k is available.

If we take the unit vector e′
0 = −e0 as an initial condition to equation (5), then the solution

is e′(t) = −e(t). Since α(τ) corresponding to e(t) and α′(τ ) corresponding to e′(t) are
equal as assumed, we have, according to equation (28), 2α(τ) = −(�e + �−e). As before,
�e + �−e = 4πK , and 2α(τ) = 4πk, so that k = −K . Here K is the winding number of e(t)
around the polar axis. Unfortunately, the geometric meaning of k in the general case is still
not clear.

Now that U(τ) is a c-number, all solutions to equation (1) become cyclic in the time
interval [0, τ ]. The total phase change is δ = 2πks = sα(τ ), mod 2π . Since this phase is
determined only up to an integral multiple of 2π , the dependence of α(τ) or k on the initial
vector e0 does not affect the result. For convenience we take the α(τ) or k that is the same
as that which appears below. If in the initial state v(0) �= 0, we take e0 = v(0)/v0 where
v0 = |v(0)| > 0. Thus v(t) = v0e(t) and �e = �v. The dynamic phase is, as shown in
equation (34), β = v0[α(τ) + �v]. It should be remarked that both α(τ) and �v may be
different by an integral multiple of 4π in different coordinate systems. However, β has a
definite value, independent of the choice of coordinate systems, which can be easily seen from
the expression β = v0

∫ τ

0 ωB(t) e(t) · n(t) dt . The geometric phase turns out to be

γ = −v0�v + (s − v0)2πk mod 2π. (41)

Here the first term is the familiar one, but an extra term appears. If s = 1/2, we have v0 = 1/2
for any initial state, and the above result reduces to γ = −�v/2, a well-known result. For
higher spin, however, the extra term depends on the initial state, as both v0 and k depend on it.
It vanishes (mod 2π of course) when s − v0 is an integer, especially when the initial state is an
eigenstate of s · e0 (it cannot be an eigenstate of s · e′

0 with some other unit vector e′
0 since v(0)

points in the direction of e0), as expected. If in the initial state v(0) = 0, we have v(t) = 0
and thus β = 0. It is easy to see that equation (41) holds in this case as well, though �v is not
well defined.

The general result (41) has been confirmed by practical calculations in the case of a
rotating magnetic field, where both γ and �v can be calculated explicitly [22]. For a magnetic
field with a fixed direction, it is easier to carry out similar calculations to verify this result.

In summary, we have shown that the time evolution operator for the Schrödinger
equation (1) can be obtained if one nontrivial solution to equation (5) can be found. We
proved that at least 2s + 1 cyclic solutions of the Schrödinger equation exist in any time
interval. These cyclic solutions can be worked out in principle if the general solution to
equation (5) is known. There may exist some particular time interval in which all solutions are
cyclic. The nonadiabatic geometric phase for cyclic solutions contains in general extra terms



6806 Q-G Lin

in addition to the familiar one that is proportional to the solid angle subtended by the trace of
the spin vector. For spin 1/2 there is no such extra term.
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